

PART 1
USER'S GUIDE

ForestCalc Inventory

ForestCalc Inventory can be used to compute forest assessment results for a single area or for an area divided into strata. The program works only with metric system units. By using this program you can compute results for five sample plot designs:
> Rectangular plot,
> Circular plot,
> Concentric circular plot,
> Point sampling (relascope),
> Nested rectangular plot.

The program computes all results into a result database. The database contains results by

- tally trees,
- tree classes by tree species by sample plots,
- all trees by sample plots, and
- stratum.

The program can compute all main result variables demanded in a proper forest inventory project, as tree stock by size classes, timber volumes, reliability estimates, biomass and carbon stock. And much more!

This manual, Part I, is called as the User's guide. The Manual Part II includes description of the databases and the program parameter files.

ABBREVIATIONS

BA	Basal area
d, DBH	Diameter at the breast height (1.3 m)
d0, D0	Diameter of stump, or diameter at the stump height (cm)
d6, D6	Upper diameter at 6 meters height (cm) (only used in Finland)
F()	as a function of ..
GIS	Geographical Information Systems
GPS	Global Positioning System
h, Ht	Total tree height (m)
ha	Hectare
Hc	Commercial bole height (m)
Ih	Height increment (m)
Ir	Increment of radius at $1.3 \mathrm{~m}(\mathrm{~mm})$
Ir (2x)	Diameter increment (mm)
m	Meter
m3	Cubic meter
MIF	MapInfo Interchange Format
MS	Microsoft
T	length of increment period (years)
US	the United States of America
UTM	Universal Transverse Mercator
v.	Version
V	Total tree volume
WGS-84	World Geodetic System 1984

Depending on country, and harvesting system, there are different names for timber assortments. In this manual the terminology is as follows:

$$
\begin{aligned}
& \text { Log = Bole } \\
& \text { Pulp wood = Pole wood }
\end{aligned}
$$

Other use timber = Fuel wood part of a stem

CONTENT

1. INSTALLATION 5
2. USING THE SOFTWARE 6
2.1. Localization 6
2.2. Data validation rules. 7
2.3. Menu system 8
2.4. Starting
2.5. Region file 10
2.6. Data entry 10
2.7. Viewing, editing and deleting data 16
2.8. Combining of databases 16
2.9. Computing of missing tree heights 17
2.10. Computing of results 18
2.11. Regression models. 25
2.12. Tree class conversion during computing 26
2.13. Biomass calculations 27
2.14. Results 29
2.15. Calculation of biodiversity indices 31
2.16. User-defined SQL Queries 34
2.17. Reliability analysis 35
2.18. Two Phase Sampling analysis 36
2.19. Input file for PLOT-GEM 37
2.20. Inventory plot locations to GIS 38
2.21. Grid data and statistics 40
3. TIMBER TABLE 41
4. ABOUT APPLICATION 43
5. REFERENCES 44

1. Installation

ForestCalc Inventory runs under Windows 2000, Windows XP or Windows Vista.

Notice.

Execute ForestCalc Inventory.msi. This is the full installation package, and the same file works also as uninstaller. Select drive and folder.

Windows-settings:

- System decimal symbol must be dot (.)
- System list separator can not be dot
- The screen resolution must be at least 1024×768.

Before first time running ForestCalc Inventory, ensure that you do the following things:

1) Copy ForestCalcLicence.dat to the program folder (if not delivered in the setup package);
2) Start the program, and if needed, change language (Asetukset, Vaihda kieli);
3) Set your default data folder = working directory (Asetukset / Settings).

ForestCalc Inventory localized settings:

See more about the parameter files Treeparalnventory.mdb and ForestPara.mdb in the Manual Part II

2. Using the software

2.1. Localization

ForestCalc Inventory can be localized into any conditions where the metric system is in use. All data parameters, input data, and result data - are saved into MS Access2000 format files. These files can be read or edited using a database management software.

The program is a stand-alone application. However, the database management application (MS Access 2000 or newer) is needed to edit the parameter files in order to localize the program. The following parameters can be adjusted in Treeparalnventory.mdb:
> Data entry validation rules;
> Tree species information: codes (text), names (local and botanical), species group code, volume model number, bole volume model number (optional), bole volume form factor (optional), biomass conversion factor (optional), charcoal conversion factor (optional);
> Tree species grouping (max. 20 groups);
> Taper curve parameters (Newnham's variable-form taper function, or Sharma \& Oderwald taper function) (optional);
> Tree volume functions (3 function groups: $\mathrm{f}(\mathrm{d}), \mathrm{f}(\mathrm{d}, \mathrm{h}), \mathrm{f}(\mathrm{d}, \mathrm{h}$, upper d$)$) for each species;
> Bole volume functions (optional);
> Biomass functions (optional);
> Biomass and carbon conversation factors;
> Tree height functions (Näslund, Polynomic and Michailoff);
> Local currency unit;
> Log timber, Pulpwood/Pole and Fuelwood prices by species or/and by species groups. Prices can be entered by cubic meter or/and by stem;
> Timber dimensions (Log/Bole and pulpwood/pole. Used only with taper functions) ;
> Timber tables (Optional). Log and pulp/pole percentage tables in text files, as a matrix of tree diameters and heights;
> Default increment period (past increment), if diameter increment is measured;
> User-defined diameter classes in the result tables;
.. and parameters in ForestPara.mdb:
> Metadata: list of Provinces, Districts, Sub districts (codes, names, areas);
> Coordinate zones;
> Aggregated data measured/estimated at a plot ($0-10$ aggregated variables, for example Vegetation type, Land use, Soil type, ..) ;
> Aggregated data measured/estimated of sample trees ($0-5$ aggregated variables, for example Timber use class, Tree quality class, Health class, ..);
> Subplot variables for seedlings/regeneration (diameter classes, height classes).

For more details about the program parameters and the parameter files, see Manual Part II.

The program supplier can edit and add new language versions. All words and phases used in ForestCalc Inventory are written into a text file, which is then compiled into the final exe file. Currently, ForestCalc Inventory is available in English, Finnish, Swedish, German, Bahasa Indonesia, Spanish and Portuguese, and if requested also in Russian.

2.2. Data validation rules

Data validation rules for data entry can be set into the file Treeparalnventory.mdb, table InputRules. ForestCalc Inventory reads the content of this table when it starts.

畐 InputRules: Table						- $\square \times$
	DataNo	DataField	FormMinimum	FormMaximum	ErrorMinimum	ErrorMaximum
	1	D, diameter (cm)	5	500	0	500
	2	H , height (m)	1.5	60	0	60
	3	Bark thickness (mm)	0	40	-1	100
	4	DO, stump diameter (cm)	-1	500	-1	-1
	5	D6, upper diameter (cm)	-1	-1	-1	-1
	6	Bole Height (m)	0	50	0	50
	7	Age, (years)	-1	-1	-1	-1
	8	lr, diameter increment (mm)	0	200	-1	200
	9	lh , height increment (m)	0	10	-1	-1
	10	Altitude, PLOT: (m)	0	4000	0	4000
	11	GPS_X, PLOT: (m/decimal degrees)	182000	800000	0	-1
	12	GPS_Y, PLOT: (m/decimal degrees)	7023000	8860000	0	-1
\downarrow	\dagger		0	0	0	0
Record: 14		13 D ${ }^{\text {1 }}$ - of 13				

The order of fields is fixed, so do not change it. You can only change the values in the fields FormMinimum, FormMaximum, ErrorMinimum and ErrorMaximum. Some explanation:

FormMinimum = Minimum limit. If the entered value less than this limit, a warning given but data will be written into the database.

FormMaximum = Maximum limit. If the entered value is greater than this limit, a warning given but data will be written into the database.

ErrorMinimum = Minimum limit. If the entered value less than this limit, an error message given and data will not be written into the database.
ErrorMaximum = Minimum limit. If the entered value greater than this limit, an error message given and data will not be written into the database.

Notice! '-1' means that no data checking is carried out.

2.3. Menu system

Form	Main menu	Sub-menus
Main		
	Settings	Set current working directory..
		Dimensions and prices..
		Settings..
		Volume equation test
		Plot recoding utility
		Change language
		Exit
	About program.	
Inventory		
	Utilities	New district (region) file
		Copy grid data
		Print screen
		All plot locations to file
		Conversion: v 3.x -> v 4.x
		Combine input files
		Update strata values from geodatabase
		Change plot number
		Check data
		Exit
	Plot database	New
		Retrieve
		Delete
		Metadata
		Areas of strata
		Transect line data
	Compute	All plot in the area
		All plot in the area (no modeling)
		* Continue interrupted calculation
		* Results by strata - updating
		Compute biodiversity indeces
		Compute biomass (bytree components)
		Compute biomass and C-stock
	Height model	Median (Veltheim)
		Median (Database)
		Sample trees (Näslund)
		Sample trees (Polynomic)
		Sample trees (Michailoff)
	Options	General
		...
		Volume equation and tables
		Bucking (Finland)

Create new databases
Copy active grid to clipboard

Export plot coordinates and attribute data to GIS

Combine 2 input data files
(valid only in Zambia)

Check a database
Exit subprogram
Enter new sample plot
View / Edit plot data
Delete one sample plot
Edit metadata
Strata codes, names and areas

Computing of results with regression modeling Computing or results without modeling

Fast recomputing, when stratum data has been edited
Biodiversity indeces by plots
Biomass calculations for tally trees into the result database Biomass and carbon calculations for trees, plots, and strata
(Valid only in Finland)
Fit height curve via median tree (D, H)
Single tree height curves
solved using regression analysis
by plot
Default price group
(optional price groups)
Equations is computing (Default)
Laasasenaho's taper curves in computing (Valid only in Finland)

Inventory results

Copy active grid to clipboard

Timber values per cubic meter
Timber values per tree (used in Zambia)

Select report for one species group only

SQL queries given in file FC_USER_SQL.TXT
Edit file FC_USER_SQL.TXT
Update menus in the program

2.4. Starting

Start the program by clicking at the shortcut ForestCalc Inventory. If the program has been set to work using different parameters by provinces, you have to select the province first.

Figure 1. Select province: this message pops up if the program has been set up to use different parameters by different regions (see more in Manual II, and database TreeParalnventory.mdb, table ProgramForestparaFileDefinition).

If needed, set up your language (Settings, Change language) (Asetukset, Vaihda kieli). Set also your default data folder for data (Settings, Set working directory). Notice that you can define an unique data folder for each province.
Check all settings (menu command Settings) and set appropriate timber prices (Dimensions and prices) as applicable.

2.5. Region file

Sample plot data are stored into a file identified by a region number. One database can contain information about several strata, but in one database all sample plots must have an unique plot ID. To start entering data for a new area, you must first create new database for input and result data using command Utilities, New region file and giving your region number (long integer, maximum value is 2147483647). Actually, the program makes copies of two blank database files for your data. For instance, if your gave region number as 131, the program copies two files into the current data folder, as follows:

$$
\begin{array}{ll}
\text { Model_InputData.mdb -> FC_Datalnput_131.mdb } & \text { (file for the input data) } \\
\text { Model_ResultData.mdb -> FC_DataResult_131.mdb } & \text { (file for the results) }
\end{array}
$$

If same region number already exists in your data folder, the command is not executed and the program gives a warning.

2.6. Data entry

Enter your new plot data by selecting Database, New. Next, give your region number and plot ID code (as number or text). If the plot ID code already exists or the region number does not have a database yet, the program gives a warning. If your entry is accepted, you get a new tab form. At each form, fill or accept first your plot type and variable list. If your plot is a permanent sample plot (PSP), you can put a tag on it. Next click at SAVE-button. Then fill in forms General data, Sample trees and Seedling information, as necessary.

```
*** NOTICE! Press SAVE button on every form! ***
```

*** NOTICE! Each plot should have an unique PLOT ID. If you enter inventory data
from various sources or if you combine two databases together, this rule should be taken into account! ***

The data validity checking bases on the predefined minimum and maximum limits, which can be set into the parameter file Treeparalnventory.mdb, table InputRules. Read more about the rules in the chapter 2.2.

Figure 2. An example of the Variables form.

The following variables can be potentially recorded at a sample plot (General data form):

+ Plot ID (text)
- Stratum ID (text)
+ Weight factor (default=1)
+ Plot dimensions, or Relascope factor
- Subplot dimensions
+ Date (Day, Month, Year)
- Measurer (text)
- Altitude (in meters above sea level)
- Slope (in degrees or percentage)
- GPS X coordinate (m or decimal degrees)
- GPS Y coordinate (m or decimal degrees)
- An image file name or image URL address
- Other information. Additional text.
- 0-10 aggregated variables defined in Forestpara.mdb, table Plot_INVENTORY_SELECTION
- **Direction along a transect line to the plot (optional)
- **Distance along a transect line from previous plot (optional)
- **Total distance along the transect line (optional).
+ obligatory data
The program does not compute any kind of slope corrections for the plot sizes. These corrections should always been carried out in the field.

In case of a stratified sampling, the plot data can be entered without giving a stratum code. However, stratum codes can be given later, since there is a practical tool to enter stratum ID for each plot: execute Plot recoding program at the main ForestCalc Inventory window.

Figure 3. General data form

At a concentric or nested plot, trees are selected and tallied following rules based on tree diameter limits. For example, at a concentric circular plot, trees less or equal to DBH 10 cm can be measured applying plot radius of 3 meters, and all bigger trees within a plot with radius of 6 meters.

The following variables can be potentially recorded at a sample trees (Tree characteristics form):

```
- Tree number
+ Species code (text)
- Tree class code
+ DBH Diameter at the breast height (cm)
- D0 Diameter of stump (cm) (written into the field 'Diameter' in grid)
- H Total tree height (m)
- Bark Bark thickness, total of two sides (mm)
- D6 Upper diameter at }6\mathrm{ meters height (cm). Valid only in Finland.
- Hc Commercial bole height (m)
- Age Tree's age (years)
- Ir (2x) Diameter increment (mm, during default period)
- lh Height increment (m, during default period)
- Tree's location at the plot
- 0-5 aggregated variables defined in Forestpara.mdb,Tree_INVENTORY_SELECTION
```

Separate sample trees can be selected for different type of measurements. In the other words, height can be measured for example of every sample tree, but age and increment are measured from every second sample tree. Computing of volume increment is possible in the program, when (at least) diameter increment has been detected.

Tree class codes are the following (Optional):

0 = other use (no log/bole and pulp/pole volumes computed)
1 = log/bole timber. DEFAULT VALUE
2 = pulp/pole wood (no log/bole volume computed)
3 = marked log/bole timber (to be removed in thinning)
$4=$ marked pulp/pole wood (to be removed in thinning)
5 = stump
6 = dead tree (no log and pulp/pole volumes computed, no increment computed)
7 = branch

Tree class codes are fixed in ForestCalc Inventory and you cannot edit them. If the tree class coding has no meaning for you, do not select them at Variables form. This program can also compute results for living trees and dead trees separately, total standing stock and removal (based on stump diameters), and for each tree class. For instance in case of an illegal logging, you can measure stump diameters and standing sample trees to determine how much timber was cut illegally.

Branches can be recorded separately using a special tree class code (7). Otherwise they are treated as trees. Branches are typical for trees growing on African miombo lands. Commercial (log/bole) volume for a branch is computed only if the bole height is recorded. Branches are not counted into the total number of stems and into the total basal area. A practical method to record branches is to give them a decimal value as Tree number. An example: the main stem gets number 3 , the first branch gets 3.1, and so on.

The user may measure locations of trees on the plot. There are two alternative methods:

- X- and Y-coordinates are measured. Usually, a plot's origin is at the lower left corner (south-west), or in the middle of the plot.
- Azimuth and distance are measured from plot's center point, which is the origin.

Instructions

- All trees are measured as sample trees and enumerated individually (so it is not possible to enter the number of trees per diameter class).
- Obligatory fields in the plot form are Plot code, Plot size or Relascope factor, Weight factor and Date.
- Obligatory fields in the tree form are Species and Diameter (or Total height). However, the program can compute missing diameters (based on a transverse height curve) if there are enough diameter and height measurements on a plot.
- The plot has always a weight factor, which is plot's relative weight in a stratum. The default value is one, zero is not allowed!
- In case of a stratified sampling design, the area of each stratum must be given.
- A plot's aggregated variables may include information about forest and soil types. These are defined in the parameter file Forestpara.mdb (see manual, Part II).
- In case of a missing or blank variable, leave this column blank or just type zero (0).

An exception: Tree class code 0 means 'other use tree' (log and pulp wood volumes not computed).

Figure 4. Concentric/Nested plot information.

Variables			General data		Tree characteristics
Number	Species	D1.3 (cm)	H (m)	\triangle	
1	BLU	22	10		
1	MRT	29	14		
1	BNS	67	20		
1	MRT	62	20		
1	THT	24	12		
1	MRT	45	17		
1	BLU	28	11		
1	KPS	73	18		
1	PTT	47	14		
1	MRT	20	12		
1	NYT	26	10		
1	MDG	21	8		
1	JBN	22	8		
1	ARG	27	12		
1	JBN	20	5		
1	GRG	22	11		
1	JBN	24	7	\cdots	
F5	Delete row				
F6	Insert row				
F7	Add rows to				

Figure 5. The sample tree form. Measured variables are set earlier at the form Variables.

The following variables can be potentially be recorded at each subplot (Seedling form):

- Observation number
- Species code (text)
- Number of seedlings/saplings
- Diameter class code (optional). See Forestpara.mdb, table Seedling_DBH_Class
- Height class code (optional). See Forestpara.mdb, table Seedling_HeightClass

Figure 6. Subplot (seedling) form.

The program computes results for each subplot into the result database. The results can also be computed by strata.

*** NOTICE! Click on SAVE button at every form! ***!

ForestCalc Inventory can be used to compute results for a stratified sampling design. In this case, each plot belongs to one stratum and there must be a stratum ID given for each plot. Give stratum ID as a text or a number, then fill in names and areas (ha) of strata using menu command Database, Areas of strata. This form contains the following fields (see Fig. 7):

- Report area name (Optional). Used in GIS to combine strata into larger aggregated unit.
+ Stratum
- Stratum number
+ Area
+ Stratum name (+ obligatory data)

Text code (required).
(Optional). Used e.g. in ArcGIS to join strata with ancillary data.
Stratum area in hectares (required).
Used in the result forms. Recommended to be filled in.

Figure 7. Stratum area form.

2.7. Viewing, editing and deleting data

You can retrieve plot data from the database for viewing and editing with the command Database, Retrieve. If you edit any information in the form 'Variables' and then you click at the SAVE-button, the data entry forms will disappear and the file must be retrieved again.

A single plot is deleted from the database by command Database, Delete. If the plot with given number exists, programs asks you to confirm this selection.

A database can be deleted only using the operating system tools (e.g. Windows Explorer). Both data file and result file should be deleted.

2.8. Combining of databases

Two input databases can be combined into a new database. The program does not combine result databases, so the results for combined data should be recomputed. The program combines the following database tables: Variables, GeneralData, SampleTrees, and SubSampleData. Please notice that metadata (table AreaData) and areas of strata (table StratumData) are read only from the first file.

ForestCalc Inventory version 6

NOTICE! Each plot should have an unique PLOT ID. If you enter inventory data
from various sources and you combine two databases, this should be taken into
account! ***

When combining two databases, follow these steps:

1) Copy input databases into your data folder.
2) Run data validity checking for both databases to be combined. Correct all critical errors.
3) In order to avoid overlapping with plot ID codes, run Plot recoding program, if necessary
4) Click menu command Utilities, Combine input files. The program asks first the IDs of databases to be combined, then the new number for the output.
5) Check the consistency of your stratum codes, if necessary. Check also the areas of strata.

2.9. Computing of missing tree heights

Basically, the program uses always a measured height for a tree if the value exists. Only the missing heights are computed using a height curve. The height curve is always computed by tree species. It is compute by plot, by strata or for whole inventory area (see Settings).

There are four possible height calculation methods in the program.

1) Height curves are not computed: all tree heights are measured in the field (e.g. in Indonesian 100% forest inventory version). This method is valid when you run 'Computing without modeling'.
2) Median (Veltheim). The first tree with height data at each plot (of each species) is treated as the median tree of the species. The height curve is computed using formula of Veltheim (in Mäkelä \& Salminen 1991). This method is valid only in the Finnish software version.

The curve is calibrated through the true diameter-height data-point of the median tree. For species having no median tree data, the height curve is computed without calibration.
3) Median (Database). The first tree with height data at each plot (by species) represents the median tree of that species. The height curve is computed using the model given for that particular species in the parameter file Treeparalnventory.mdb, table HeightCurveForInventory. There can be only one predictor variable: diameter. The curve is calibrated to go through the median diameter-height data-point. For species having no median tree data, the height is computed without calibration.
4) Sample trees (Default), Regression method. The height curve is computed using two-parameter regression model for each species by plot separately. If there are not enough height sample trees on the plot, then 100 first sample trees of that species are used to compute the model. Models forms are Näslund, Michailoff (Schumacher) and Polynomic.

A missing tree diameter $(\mathrm{DBH}=0, \mathrm{~h}>1.3 \mathrm{~m})$ is computed from the (reverse) height equation.

The program can correct "illogical height curves": For instance, Näslund model a-parameter may not be negative or Michailoff model a-parameter may not be positive. An illogical curve may
emerge if the observations (d,h) are as follows: $(24,26),(25,23),(26,22)$. So, the bigger trees (at DBH) are shorter. In this case, uncorrected models may give unrealistic heights for small diameter trees: even more than 1000 meters!

2.10. Computing of results

The results are always computed for all plots in the database at a time. First, the program asks for the region number. Second, the program asks whether computing is executed for one single area or by strata. In case of a single area, the program asks you to give the size of the area (in hectares). In case of a stratified sampling, the program uses stratum areas, as entered already. When the processing is completed, you can go to view the results. The computing creates a log file (text file) in the database folder. The log file name is of the form Info_Areanumber.log.

The program computes results for each tree, each tree species at the plot, tree classes at the plot, all trees at the plot, for strata and for the total inventory area. The results are written into the result database. Actually there are more results in the result database as the program can show you! The order in computing is the following: first the program computes all model parameters by species per plot (e.g. height curve parameters), then tree level results, next plot level results and finally stratum level results. The program uses always the measured observations, only the missing values are computed by the help of models.

The regression models are computed only for those variables, which were selected (at the form Variables). The computing of missing height was explained in previous chapter. For other variables, the regression models can be computed when there are minimum of 3 observations. This minimum limit can be changed in the program main menu (Settings). If a certain species has not enough (at least the minimum number of) observations to compute a model (e.g. age model), then the regression model is computed by collecting more observations first from so-called corresponding (substitution) species list, which rules is read from the database Treeparalnventory.mdb (table TreeSpecies, field CspeciesList). The program collects observations (of corresponding species) as long as there are enough observations for regression. If the number of observations is insufficient at a plot, then the program picks up first 100 trees of that particular species from the data.

Example 1.
Corresponding list for spruce (code 2) is the following: $1,3,{ }^{*}$
If there are not enough sample trees among spruces at the plot to compute a regression model for age, all pine trees (species code 1) are selected for modelling;
if the number of trees is not yet enough, then all birches will be chosen (species code 3);
if the number of trees is not yet enough, then all (age) sample trees at the plot are chosen.

Example 2.

If this list for some species is left blank, then all species are equal (same as '*') and there is no priority set to select certain species first

The expansion factor (number of trees per hectare) and basal area (per hectare) are computed for each tree. At a relascope sample plot, basal area of each tally tree is equal to the relascope factor, and the number of trees per hectare is computed using the following formula:

$$
\begin{aligned}
& n_{\mathrm{i}}=4 / \mathrm{PI} * B A f / d_{\mathrm{i}}^{2}=1.27323{ }^{*} B A f / d_{\mathrm{i}}^{2} \\
& \text { where } n_{\mathrm{i}}=\text { trees } / \mathrm{ha}, B A f=\text { relascope factor, } d=\text { diameter }(\mathrm{m})
\end{aligned}
$$

The expansion factor for a rectangular and circular plot is calculated by dividing 1 hectare ($10000 \mathrm{~m}^{2}$) by the sample plot area. To adjust the plot size at per-hectare, tree basal area is multiplied by the expansion factor and summed up for all trees at the plot. At a concentric/nested plot, plot area of each tree depends on the tree's diameter according to the given rule.

If any diameter increments have been measured, volume of each tally tree T years ago can be computed (default 5 years back from measuring time). First, the program computes diameter under bark, but if the bark thickness has not been measured, a default bark thickness is assumed to be 10% of the diameter (at 2 sides).

Second, diameter increment ($=2 \mathrm{x}$ radius growth, T years) is subtracted from the diameter under bark, and the result gives the diameter under bark T years ago. Third, this diameter is transformed to diameter above bark by assuming that bark's thickness in relation to the diameter is constant. Next, the tree height T years ago is calculated by subtracting the height increment from the current tree height. If height increments have not been measured, the program estimates the tree height in the past with the help of a height curve.

To calculate the total tree volumes, you can select one of the following methods:

1) volume equations (default), or
2) Laasasenaho's taper curves (valid only in the Finnish program version),
3) Newnham's variable-form taper functions, or
4) Sharma \& Oderwald dimensionally compatible taper functions.

About these models, read more later in this document.

Options $<$-General Result:
\checkmark General
Volume equation and tables
Variable-form taper functions

Figure 8. Selection of the timber group (dimensions and prices) and volume calculation method.

Total stem and timber volumes: Volume equation and tables

The total stem volume is computed applying the volume equation written into the parameter file by species. If DBH and total tree height are known (or computed using height model), the program uses two-parameter model $\operatorname{Vol}=F(D B H, h)$. If only the $D B H$ is known, the program uses one-parameter model $\mathrm{Vol}=\mathrm{F}(\mathrm{DBH})$. If the increment data are measured, the program can also compute timber volumes T years ago.

There are basically 3 different methods to compute timber volumes for each tree, depending on the information entered into the parameter file Treeparalnventory.mdb, table TreeSpecies, field TimberTableFileName.

1) If the field TimberTableFileName contains a name of a text file name, then

Log and pulp wood are computed multiplying total volume with log and pulp wood percentages, which are read from given text file (see the parameter file Treeparalnventory.mdb, table TreeSpecies in Manual Part II). This method is valid only in Finland.
2) If the field TimberTableFileName contains an integer number referring to the table BoleVolumeModels, then

Log/Bole volume is computed using bole volume equation, which is a function of DBH and commercial tree height, VolBole=F(DBH,Hc). In this case, pulp/pole volume is not computed.
3) If the field TimberTableFileName contains a bole form factor (decimal number, e.g. 0.8), then Log/Bole volume is computed using a form factor [VolBole=F(factor,DBH,Hc)]. In this case, pulp/pole volume is not computed.

Timber volumes: Taper curves

The stem volumes can also be computed using a taper curve of Laasasenaho (1982), Newnham (1988, 1992) or Sharma \& Oderwald (2001). Hence, the log/bole and pulp part are computed applying the selected taper equation and predefined timber dimensions (from the parameter file). If the increment measurements are available, the program can compute timber volumes T years ago.

Stem value

The stem value is computed multiplying timber volume by unit prices (log, pulp, top) and totaling the figures.

Annual volume increment

The mean annual volume increment and value increment are calculated by subtracting volume (or value) T years ago from the current volume, and the residual is divided by the length of the growing period (T).

Results for stratum (volume) (see e.g. Freese, 1962)

Here is the description of methods used to compute the statistical information by forest strata.

Mean of the stratum.
\bar{X}
The mean of sample plot volumes, weighted by proportional of each sample plot area in the stratum

The standard deviation (\mathbf{s}_{x}) is the basic measure of plot-to-plot variability.

$$
\sqrt{\frac{\sum_{i=1}^{\mathrm{n}}\left(\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{X}}\right)^{2}}{\mathrm{n}-1}}
$$

1998-2009, ForestCalc Consulting Oy

where $n=$ number of sample plots

The standard error (SE) in sampling without replacement is computed as
$S E=\sqrt{\frac{s_{x}^{2}}{n}\left(1-\frac{n}{N}\right)}$
If $n / N<0.05$, ForestCalc Inventory ignores the finite population correction and uses the shortened form as follows
$S E=\sqrt{\frac{s_{x}^{2}}{n}}=\frac{s_{x}}{\sqrt{n}}$
where $\quad s_{x}{ }^{2}=$ variance between plot volumes
$\mathrm{n}=$ number of sample plots in stratum

Coefficient of variation (CV).

$$
C V=\frac{s_{x}}{\bar{X}}
$$

Usually presented as percents, then multiplied by 100.

Results for inventory area (volume)

The mean of the stratified sample is computed by:

$$
\bar{X}_{\mathrm{st}}=\frac{\sum_{\mathrm{h}=1}^{\mathrm{L}} \mathrm{~N}_{\mathrm{h}} * \overline{\mathrm{X}}_{\mathrm{b}}}{\mathrm{~N}},
$$

where
$L=$ The number of strata
$N_{h}=$ The size of stratum $h(h=1,2, \ldots, L)$ in ha
$N=$ The total size of the area in hectares $\left(N=\sum_{h=1}^{L} N_{b}\right)$

The standard deviation (SD) is computed as follows:

$$
S D_{S T}=\sqrt{\frac{1}{W^{2}} \sum_{h=1}^{L} W_{h}^{2} s_{h}}
$$

The stratified standard error ($S E_{S T}$) of the mean volume (per hectare) is computed as follows:

$$
S E_{S T}=\sqrt{\frac{1}{W^{2}} \sum_{h=1}^{L}\left[\frac{N_{h}^{2} s_{h}}{n_{h}^{2}}\left(1-\frac{n_{h}}{W_{h}}\right)\right]}
$$

If the sampling fraction in the strata is less than 0.05 , then ForestCalc Inventory uses the shortened form as follows:

© 1998-2009, ForestCalc Consulting Oy

$$
S E_{S T}=\sqrt{\frac{1}{W^{2}} \sum_{h=1}^{L}\left[\frac{W_{h}^{2} V a r_{h}}{n_{h}^{2}}\right]}
$$

where
Var $r_{h}=$ variance in stratum h
$n_{h}=$ number of plots in stratum h
$W_{h}=$ area (ha) in stratum h
$W=$ total size of the area in hectares

95\% confidence interval for (cubic meter) volume per hectare:

$$
\begin{aligned}
\overline{\mathrm{X}}_{\mathrm{ST}} & \pm \mathrm{t}_{0.05, \mathrm{n}-1} * \mathrm{SE}_{\mathrm{ST}} \\
\text { where } & \mathrm{t} \\
& =\text { Student } \mathrm{t} \text {-table value, } \\
\mathrm{n}-1 & =\text { degrees of freedom. }
\end{aligned}
$$

Relative efficiency ($R E$)

The effects of stratification and stratified estimation on precision are assessed using relative efficiency, where $R E>1$ indicates a beneficial effect. This is defined for (total timber volume) as
$R E=\frac{\operatorname{Var}\left(\bar{y}_{S E S}\right)}{\operatorname{Var}\left(\bar{y}_{S t y}\right)}$
Where variance based on simple random sampling (SRS) is divided by the estimate of variance based on stratified sampling. ${ }^{1}$

Two Phase Sampling analysis

Assume a linear regression, $y=a+b x$ (y refers to $2^{\text {nd }}$ phase data, field data, x to $1^{\text {st }}$ phase data). The program can compute the optimum number to second-phase sampling units (m) for strata (when r^{2} runs from 0.2 to 0.9) for a given accuracy level for total timber volume per hectare, applying formula by Cochran (1977) ${ }^{2}$:
$\operatorname{Var}_{\bar{y}} \approx s_{y}^{2}\left(\frac{\left(1-r^{2}\right)}{m}+\frac{r^{2}}{n}\right)$
Where
$\operatorname{Var}_{\bar{y}}=$ variance of the mean;
$r=$ coefficient of correlation between x and $y ;(0.2-0.9)$.
$n=$ number of first phase sampling units (assumed 100000 satellite image pixels).

[^0]
2.11. Regression models

(1) Height

There are 3 different types of height models for the regression method (Table 1). The models are written into TreeParalnventory.mdb, table HeightModel.

Table 1. Height models

Name	Equation	Linearized equation	$Y^{\prime}($ Lin. form predicted variable)
Näslund	$h=1.3+\frac{d^{2}}{(a+b d)^{2}}$	$a+b \times d$	$\frac{d}{\sqrt{h-1.3}}$
Polynomical	$h=1.3+a \times d+b \times d^{2}$	$a+b \times d$	$\frac{h-1.3}{d}$
Michailoff $/$ Schumacher	$h=1.3+a e^{-\frac{b}{d}}=1.3+e^{B} \times e^{\frac{A}{d}}$	$A+B \times d$	$d \times \ln (h-1.3)$

(2) Bark thickness (mm)

$$
b=a_{2}+b_{2} d
$$

(3) Stump height diameter (cm)

$$
d_{0}=a_{3}+b_{3} d
$$

(4) Upper diameter (d6) (cm)

$$
\mathrm{d}_{6}=a_{4}+b_{4} \mathrm{~d}
$$

(5) Bole height (m)

$$
h_{c}=a_{5}+b_{5} d
$$

(6) Age (years)

$$
\mathrm{t}=a_{6}+b_{6} \mathrm{~d}
$$

(7) Radius increment (mm)

$$
\mathrm{i}_{\mathrm{r}}=a_{7}+b_{7} \mathrm{~d}
$$

(8) Height increment (m)

$$
i_{h}=a_{8}+b_{8} d
$$

All equations have the same predictor variable d (the tree diameter at the breast height, cm). All equations are solved by species. If there are not enough (default=3) sample trees of that speciies, the program uses so-called corresponding species list to collect sufficient number of observations (see the previous chapter).

Linearization causes bias to the result, so the height model correction factor needs to be computed as follows: total sum of true heights of sample trees is divided by the sum of heights of sample trees computed using height model.

An example. Spruces and pines were measured on the plot, but there are not enough spruces to compute height model, then combined data of spruces and pines are used to compute height model parameters. But correction factor for spruce is computed only using spruce sample trees, as described above.

2.12. Tree class conversion during computing

ForestCalc Inventory uses a fixed internal tree class coding, see more in chapter 2.6. These may differ from codes used in your country or in your forest inventory project. In this case, you must use a tree class conversion file to execute the computing correctly. Using this special file, one of the aggregated tree level variables will define your tree class.

If the text file FC_Tree_Conversion.txt exists in your program folder, the program can read instructions how to convert your codes into ForestCalc TreeClass codes during computing. So, if this text file exists, each time before computing the program asks if you wish to use the existing FC_Tree_Conversion.txt. The conversion does not make changes into the input data. Your conversion rule can be based on your own tree class codes or any other aggregated tree level variables, such as quality class. Please study internal TreeClass codes in ForestCalc Inventory and then study the content of FC_TreeConversion.txt.

Secondly, the program can also convert a tree with a subnumber (decimals) in ID field TreeNumber into the branch class (TreeClass $=7$), if required.

For example, there is a list of recorded tree numbers as follows: 6, 6.1, 6.2, 7, 8, 8.1
In this case, after conversion these trees are treated as

$$
\begin{array}{ll}
\text { tree: } & 6,7 \text { and } 8 \\
\text { branch: } & 6.1,6.2,8.1
\end{array}
$$

An example.

```
l************************************
! FC_Tree_Conversion.txt
! Conversion file for trees in FC Inventory calculation
!
! Parameters:
! 1: Column index (TreeClassVariable_Index).
! 2: value in TreeClassVariable_Index
! 3: new TreeClass code
!
! TreeClass codes are:
! 0=other use tree (no log&pole), 1=log tree (default), 2=pulp/pole tree,
! 3=marked log tree, 4=marked pole tree, 5=dead tree, 6=stump, 7=branch
!************************************
```

$1,4,5 \quad$! This is the conversion rule 1

```
1,5,5 ! This is the conversion rule 2
!************************************
! Conversion of Trees with decimals in TreeID code into branches
! For example: TreeID=9 -> stem, TreeID=9.1 -> branch
!
! Values are YES / NO
DecimalConversion \(=\) YES
```

If in the field TreeClassVariable_Index_1 ($1^{\text {st }}$ variable) there is the value of ' 4 ' (conversion rule 1) or ' 5 ' (conversion rule 2), the program will use the internal tree class code 5 (= a dead tree). Because DecimalConversion = YES, the program converts all trees carrying TreeNumber with decimals into the class 7 (branches).

WARNING! The file FC_TreeConversion.txt may not have right conversion parameters for your forest inventory project. If you want to apply this conversion technique, please test it first!

2.13. Biomass calculations

ForestCalc Inventory can compute tree biomass and carbon (C) stock results. Biomass and C-stock calculation can be executed only after a successful computing of inventory results. The most simple way to compute tree biomass and carbon stock is to use same default parameters for all tree species. The second option is to compute the results by using parameters by species (see table TreeSpecies in the parameter file). See Settings to set your default values.
$\mathbf{A G}=$ above ground, $\mathbf{B G}=$ below ground

StemBiomass (tons) = WoodDensity \times StemVolume /1000
Biomass_AG $=$ BEF \times StemBiomass
Biomass_BG = RootShootRatio \times Biomass_AG
Total Biomass = Biomass_AG + Biomass_BG
Carbon_AG (tons) = CarbonFactor \times Biomass_AG
Carbon_BG = CarbonFactor \times Biomass_BG
Total Carbon = Carbon_AG + Carbon_BG

Alternatively, you can use equations by species for computing stem biomass and/or below-ground tree biomass:

```
StemBiomass (tons) = F(d,h,WoodDensity,StemVolume)
Biomass_BG =F(Biomass_AG)
```

If you compute results using parameters by species, the program uses the biomass equations if these exist (see more in the next chapter). If species-specific equations do no exist, the program computes biomasses with the help of wood density factor and root/shoot ratio.

The biomass/carbon calculation by tree class goes as follows:
$>$ live tree (TreeClass codes $0-4$): stem, AG, BG;
> dead tree (TreeClass = 5): stem, 90% AG, BG;
> stump (TreeClass = 6): stem=0, AG=0, BG;
> branch (TreeClass $=7$): stem, $\mathrm{AG}, \mathrm{BG}=0$.

Biomass by tree components

ForestCalc Inventory uses special equation tables for computing biomass components of trees. In the file Treeparalnventory.mdb, the biomass variable names are defined in the table BiomassVariables, and the equations are given in the table BiomassModel. The species are linked into the equations (TreeSpecies.ModelBiomass -> BiomassModel.Code). The 'variable' number refers to the object, so there can a different model for each tree part (e.g. stem, leaves, needles, living branches, dead branches, roots, etc.).

Biomass calculation can be executed only after a successful computing of inventory results. The biomass results are written into the result database, the table name is NumTreeBiomass. The results are written for each tally tree, the unit is per hectare.

Figure 9. Biomass models in the parameter database.

The following variables are available when writing the biomass equations (read more about writing rules and variable naming from the Manual 2): diameter, total tree height, dry weight factor, 2 user-defined conversion factors by species, total stem volume, log part volume, pulp (pole) part volume and top waste volume.

2.14. Results

After computing the results, you can look at the result tables with command Results. Results can be shown by strata, species groups, species and tree classes. The results can also be viewed for living trees (TreeClass codes $0-4$), dead trees (TreeClass $=5$) or branches only (TreeClass $=7$).

Figure 10. Result window

The diameter limits can be changed through the main menu (Settings). The lower limit of each diameter class is given at a list and the separator mark is a semicolon.

An example of user-defined diameter limits

1) if the list is $0 ; 10 ; 20 ; 30 ; 40$

Then the results are shown by diameter classes as follows: $0 \leq d<10,10 \leq d<20,20 \leq d<30,30 \leq d<40,40 \leq d$
2) if the list is of the form $20 ; 40 ; 50$

Then the results are shown by diameter classes as follows: $20 \leq d<40,40 \leq d<50,50 \leq d$
Trees less than 20 cm DBH are not shown. © 1998-2009, ForestCalc Consulting Oy

Figure 11. Results by the diameter classes.

You can look at the following results through the program: total timber volume, bole (log) volume, pole (pulp) timber volume, increment (past time), value by timber types, density (trees/hectare), basal area, mean diameter, mean height, biomass (above ground and total) and carbon stock (above ground and total).

Plot and tree variables can be changed from the dropdown lists. The aggregated plot variables are read from the parameter file ForestPara.mdb (more in Manual II). The result tables can be copied via clipboard to a spreadsheet program, which is a practical tool for creating informative charts to visualize the results.

Figure 12. Results by species groups. You can select your variable of interest from the dropdown list.

2.15. Calculation of biodiversity indices

A biodiversity index seeks to characterize the diversity of a sample or community by a single number (Magurran 1988). The concept of "species diversity" involves two components: the number of species, or richness, and the distribution of individuals among species, or evenness. Most indices that have been proposed to measure biodiversity try to encompass the two dimensions of the concept: richness and evenness. Many of the differences between indexes lie in the relative weighting that they give to evenness and species richness. With ForestCalc Inventory, the following indices can be computed for each sample plot from sample tree data:

1. Species Richness (Species count)
2. Alpha diversity
3. Shannon index
4. McIntosh index
5. Dominance index (= 1 - Simpson Index)
6. Berger-Parker index
7. Evenness
8. Q-Statistic

© 1998-2009, ForestCalc Consulting Oy

Species Richness (S). The simplest measurement of species diversity is a species count. Simple species counts remain the most popular approach to evaluate species diversity and to compare habitats or species assemblages. While species counts are often an early step in many ecological and community studies, the number of species per se provides little insight into the underlying ecological mechanisms that define biodiversity, nor does it encompass evenness.

Alpha is calculated by first estimating x from the iterative solution of

$$
\frac{S}{N}=\frac{1-x}{x}(-\ln (1-x)
$$

where $S=$ the number of species in the sample and $N=$ the number of individuals in the sample, and then calculating Alpha from

$$
a=\frac{N(1-x)}{x}
$$

The Shannon or Shannon-Weaver (Weiner) Index is calculated as

$$
H^{\prime}=-\sum p \ln R
$$

where p_{i} is the proportion of individuals in the $i^{\text {th }}$ species. Shannon's Index measures the average count per individual of samples taken from a population of species.

The McIntosh index is calculated as

$$
M=\left(\Sigma n_{i}^{2}\right)^{0.5}
$$

Where n_{i} is the number of individuals in the $\mathrm{i}^{\text {th }}$ species in the sample.

Simpson's (dominance) Index is calculated as

$$
D=\sum\left(\frac{n_{2}\left(n_{2}-1\right)}{M(M-1)}\right)
$$

where n_{i} is the number of individuals in the $i^{\text {th }}$ species. Simpson's Index encompasses the richness (total number of species) and evenness (number of individuals per species of a given population). The higher D, the lower the diversity.

The Berger-Parker Index is calculated as

$$
d=\frac{N_{m x}}{N}
$$

where $\mathrm{N}_{\max }=$ the number of individuals in the most abundant species. Like Simpson's index, higher d means lower diversity, so the reciprocal is often used.

Evenness is a measure of how similar the abundances of different species are. When there are similar proportions of all species then evenness is one, but when the abundances are very dissimilar (some rare
and some common species) then the value increases. One type of evenness index is derived from the Shannon-Weaver index:
$E=H / \ln (S)$
where $S=$ number of species in the sample,
H = Shannon-Weaver index.

Q-Statistic (\boldsymbol{Q}) is a diversity index presented by Kempton and Taylor (1976). The index is based on the slope of cumulative species curve in the mid-range of abundances. Q is less sensitive to the commonest species in the sample, than e.g. Simpson's index. Mathematical presentation is as follows:

$$
Q=S / 2 \ln \left(R_{2} / R_{1}\right)
$$

Where
$S=$ number of species in the sample,
$R_{1}=$ lower quartile of the species abundance distribution,
$R_{2}=$ upper quartile of the species abundance distribution.

2.16. User-defined SQL Queries

User-defined SQL Queries can be written into the file FC_USER_SQL.TXT and then used through the program. FC_USER_SQL is a text file which can be edited with a text editor. Maximum of 10 SQL queries can be set. There syntax is as follows:

\#number Query_Title

Notice! There must be the space mark between number and Query_Title

A SQL query can retrieve data only from the result database.

- FC_USER_SQL - Notepad		\square	X
File Edit Format Yiew Help			
*1 Männyn lukupuiden tulokset SELECT * FROM NumTreeresult where species='1' \#2 Annetun puulajin lukupuut SELECT * FROM NUMTreeresult wHERE species='?' AND d>? \#3 Tilavuudet puulajeittain ja koealoittain SELECT sum(voltree) AS Tilsumma, Plot, Species FROM NumTreeresult GROUP BY Plot, species			
	\leqslant		:

If there is a question mark in the sentence, then the program halts and there pops up an input box asking the value of the parameter. This will be repeated as many times as there a question mark.

ForestCalc Inventory	X	
Give parameter [?):	OK	
SELECT * FROM NumTreeResult WHERE Species='?'	Cancel	
\|		

Result of a query is written into a text file and opened in NotePad. The separator mark is semicolon. This data is easy to copy via the clipboard into a spreadsheet program for further analysis (Ctrl+A,Ctrl+C).

2.17. Reliability analysis

ForestCalc Inventory contains a reliability analysis tool and it can substitute some external programs, such as PLOT-GEM (see the next chapter). This practical tool can be used to determine the sample size set to achieve a desired accuracy for the selected estimate of a mean in a stratum or at the total inventory area. The program uses bootstrap technique in the processing.

The following estimates can be selected for the criteria of analysis: volume ($\mathrm{m} 3 / \mathrm{ha}$), density (trees/ha), basal area ($\mathrm{m} 2 / \mathrm{ha}$), biomass (tons/ha) or carbon stock (tons $/ \mathrm{ha}$). There are three options estimating confidence interval limits: $90 \%, 95 \%$ and 99%. The analysis can be executed for living trees only or for all trees at a time (living+dead). It can be also done for a certain tree species.

Figure 13. Reliability analysis.

2.18. Two Phase Sampling analysis

Assume a linear regression, $y=a+b x$ (y refers to $2^{\text {nd }}$ phase field plot data, x to $1^{\text {st }}$ phase Remote Sensing data). Based on existing forest inventory data, the program can compute the optimum number to secondphase sampling units for strata (when r^{2} runs from 0.2 to 0.9) for a given accuracy level for total timber volume per hectare, applying formula by Cochran (1977). See more explanations in the chapter 2.10. (Computing of results). The results are written into a file 2PhaseSampling.txt as semicolon delimited text. The file is easy to copy/open to MS Excel (Fig. 14).

Stratum	N_InvPlots	N of field plots	$\mathrm{R} 2=0.9$	$\mathrm{R} 2=0.8$	$\mathrm{R} 2=0.7$	$\mathrm{R} 2=0.6$	$\mathrm{R} 2=0.5$	$\mathrm{R} 2=0.4$	$\mathrm{R} 2=0.3$	$\mathrm{R} 2=0.2$
1	9		12	24	36	48	60	72	83	95
2	6		3	6	9	12	15	17	20	23
4	12		2	4	5	7	8	10	11	13
5	20		2	3	4	5	6	7	8	9
6	23		2	4	5	7	9	10	12	14
7	21		2	4	5	7	8	10	11	13
8	19		1	2	3	4	5	6	7	8
9	38		2	4	6	7	9	11	12	14
10	12		2	4	6	8	9	11	13	15
11	19		3	6	8	11	13	16	18	21
12	25		2	4	5	7	8	10	11	13
13	3		1	2	3	3	4	5	6	6
14	10		2	4	5	7	8	10	11	13
15	13		2	3	4	5	6	7	8	9
16	13		2	4	5	7	8	10	11	13
17	22		2	4	5	7	8	10	12	13
18	4		1	2	3	4	5	6	7	8
19	8		4	7	10	13	16	19	22	25
20	11		2	3	4	6	7	8	9	11
21	3		3	6	9	12	15	18	21	24
22	4		1	2	3	4	5	6	7	8
23	5		4	7	11	14	18	21	25	28
Total Area	300		57	109	154	205	250	300	345	396
Acceptable error	10	Percent								

Figure 14. Optimum number to second-phase sampling units.

2.19. Input file for PLOT-GEM

PLOT-GEM is freeware software developed at the US Forest Service, Inventory \& Monitoring Institute in Fort Collins, Colorado. PLOT-GEM can be used to determine the sample size necessary to achieve a desired accuracy for the estimate of a mean in an individual stratum. Plot-GEM generates the percent error using a bootstrap technique. This program and its manual can be downloaded from the Internet.

ForestCalc Inventory can write a text file compatible with PLOT-GEM data entry structure. First retrieve results to the region of interest. Then run Utilities, Input file for PLOT-GEM. The program writes a text file and opens it in Notepad. Each row presents plot result (per hectare basis). In Notepad, select all (Crtl+A) and copy selection to the clipboard. Paste selection into PLOT-GEM's input form.

```
F/PlotResults.txt - Notepad
File Edit Format Help
P7ot,Stratum,TreesPerHa, BasalArea, Totalvolume, volumeLog
101,Str_2,865,11.84744,103.4076,21.74433
1031, str_}_2,350,10.88955,94.66911,31.04167
1032,Str_2,100,0.2481858,0.8842014,0
1033,str__2,205,3.266864,26.7186,14.28262
11, Str_2,185,3.49404,27.56753,8.01619
112, str_2,175,6.50133,55.39862,15.33121
1121,str_2,595,6.713682,37.41102,7.878024
113,5tr_2,110,4.098895,23.85603,7.121358
121,Str_2,1175,15.48275,165.0823,32.02952
1321, str_2,0,0,0,0
133,Str_2
1384, str__2,0,0,0,0
14,Str_2,430,14.46144, 205.3,40.46203
1413,str_2,150,10.05349,62.18058,21.78553
```

Figure 15. Input data for PLOT-GEM.

At the time of writing this manual, there were some troubles running PLOT-GEM in Windows XP, but no problem with Windows2000.

1998-2009, ForestCalc Consulting Oy

2.20. Inventory plot locations to GIS

All plot coordinates can be exported to GIS by selecting Utilities, All plot locations to file. The program opens a new window (Fig. 16).

Figure 16. GIS export options.

There are three export formats which you can select: MIF/MID, KML and text file. MIF/MID is the interchange format developed by MapInfo ${ }^{\circledR}$ Corporation (Fig. 16). KML was developed to show location data on Google Earth ${ }^{\circledR}$.

If MIF/MID format output is selected, and if the region number is 100 , then the program writes data into files Area100.mif and Area100.mid, either as point data or as polygon data. The polygon data can show the true plot borders on a map, and MIF/MID can carry coordinate system information too. The input data can be in the UTM (Universal Transverse Mercator, with datum WGS-84), in Latitude/Logitude coordinates as decimal degrees (in WGS-84) or in Finnish KKJ-system. If you use the UTM, the program asks the zone number and hemisphere ($S=$ Southern/ $N=$ Northern). Give it as form of ' 35 N '. An advanced user can modify the MIF-file, if more changes are needed.

Output in KML format creates two output files: one file for point data and another file for polygon data. For region number 100, the name of point file is Area100_Points.kml and for polygon file Area100_Polygons.kml.

For export in KML format, the user can select whether to embed plot's input data into the point file, or some key results. If an image file exists for a plot, the program writes information about it into the point file too.

Figure 17. ForestCalc KML file in Google Earth.

In export in text format, the output file consists of plot location coordinates. Attribute data (General data) contains region number, stratum and plot codes, and the general plot data (such as vegetation type, soil class). The results can be written into a text file either by writing the plot level data into it, or tree level data. The plots without coordinate data $(0,0)$ are not written into the result file.

Mif-format files can be converted to ArcView shape files for instance using ESRI utility program MIFSHAPE (MIF to Shape).

Figure 18. Query box in ArcView GIS. Add full path to the input file and to the result file, and no spaces in path names.

2.21. Grid data and statistics

The program uses grids (controls) in many part of the program (see e.g. Figure 6). The following keys are valid on these grids:

<F5>	Delete row. Active row is deleted.
<F6>	Add row. A new row is added.
<F7>	Add new blank rows to end of table
<F8>	Add a new row and copy all data from the previous row.
<DELETE>	Delete cell content
<BackSpace>	Delete previous character
<ENTER>	Move cursor into the next cell
Ctrl+C	Copy active cell to the clipboard
Shift+Ins, Ctrl+V	Paste

The user can get statistics from any grid column where there are input data. First, activate the grid (click cursor into it), and then press right mouse button upon the selected column header. If the selected column includes text (characters) in any cell, then the programs computes only the number of cases (\mathbf{N}).

ForestCalc $\quad X$
D1.3 (cm) :
$\mathrm{N}=9$
SUM $=277.4$
MIN $=7$
MAX $=57$
MEAN $=30.82222$
OK

Figure 19. Statistics on selected column.

All grid data can be copied to the clipboard using command Utilities, Copy table. This function is practical tool when the grid data needs to be processed for example in MS Excel. The program copies the active (visible) grid to the clipboard.

3. Timber table

All timber dimensions and prices are stored into the parameter file Treeparalnventory.mdb, table TimberTable. This table can be edited in ForestCalc Inventory: click Settings, Dimensions and prices.

Figure 20. Timber table.

Data shown with yellow header are required, however field 'Name' is useful fill in too. Timber prices are in the column Value, and the price is given per cubic meter in the local currency unit. The value of one single stem - if applicable - is given in the field Value/Tree (in use in Zambia).

The table includes minimum upper diameters that are used only with taper curves, not with volume equations. However, fill also these fields using some default values.

The user can give different unit prices e.g. by organizations, companies or geographical areas (Source). The maximum number of different groups (~field "Source") is ten.

© 1998-2009, ForestCalc Consulting Oy

Rules for filling this table

Fill first all data for group 1 so that group's name is written similarly on each row. Give prices of logs/boles (Type $=1$), then pulp/pole wood prices (Type $=2$), if applicable. Last, give your price for the other use wood (such as firewood) (Type = 0).
If applicable, next fill in data for price group 2, following the rule above.

The same prices (and dimensions) can be given at a time for more than one species: fill in field Species as a list of species codes, where the separator mark is a comma (,). Dimensions and prices can also be given by species groups: write first a hash (\#) following the species group code, as follows: \#1,\#2 (= species groups one and two). Check your species grouping in the parameter file Treeparalnventory (TreeSpecies.GroupCode -> TreeSpeciesGroups.Code).

When computing the results, ForestCalc Inventory uses the timber table as follows:
The lookup is always executed top to down.

1) Check 'Group name' -> If TRUE, stop; otherwise move down
2) Check timber type ($1=$ log/bole, $2=$ pole, $0=o t h e r$) $->$ If TRUE, stop; otherwise move down
3) Check species code -> If TRUE, stop; otherwise move down
4) Check diameter from the rule list -> If TRUE, stop; otherwise move down

If there is no match for certain timber type or species, then that tree part cannot get any monetary value.

Bucking (valid with taper curves)

The \log (bole) dimensions can be given by species or/and by species groups: fill in the minimum upper diameter (over bark), minimum and maximum length and the cutting interval in bucking (Division). If interval value is zero, the program uses interval of 0.3 meters. Dimensions for pulpwood can be given in a similar way: fill in the minimum upper diameter (over bark). Pulp log minimum length is always 2 meters in the program. The dimension's for "other use" (class=0) are not used anyway, but the priced of timber is used.

4. About application

Copyright and liability

Copyright owned and all rights reserved by ForestCalc Consulting Oy, Joensuu, Finland. License holder mentioned in license file (ForestCalcLicence.dat) - may not loan, rent, lease, lend or otherwise transfer ForestCalc Inventory to another user without permission from ForestCalc Consulting Oy. License holder is allowed to use prints, screen captures, tables, graphics and the program guides freely. Moreover, this manual or parts of it can be distributed freely, as long as the original source is mentioned.

In no event shall ForestCalc Consulting Oy be liable for any special, incidental, indirect, or consequential damages whatsoever (including, without limitation, damages for loss of business profits, business interruption, loss of business information, or any other pecuniary loss) arising out of the use of or inability to use the software product or the provision of or failure to provide support services, even if ForestCalc Consulting Oy has been advised of the possibility of such damages.

ForestCalc is a registered trademark in Finland.

ForestCalc Consulting Oy never sells or exchange customer information data with other organizations.

Background

The program is coded using Visual Basic ${ }^{T M}$ Pro 6.0 and Service Pack 6. Database structure is created using MS Access2000 ${ }^{T M}$. The program uses freeware RMCHART graphic control for showing results of the reliability analysis. All texts in the program are written into a text file (which is linked into the EXE-file), so that the program can be modified and translated into any new language. At the moment, there are ready versions in English, Finnish, German, Swedish, Bahasa Indonesia, Spanish and Portuguese. MS Visual Studio Installer and Orca are used to create deployment packages.

The development of the program initiated in October 1997 and ForestCalc 1.0 was released in August 1998. The original ForestCalc consisted of the following modules: Timber analysis, Single tree volume, Tree group volume, Sample plot, Compartment calculation and (until version 3.x) Forest inventory.

The application solely dedicated for forest inventories, ForestCalc Inventory, was launched after a consultancy mission to Central Kalimantan (Indonesia), in August 2003. Several experts and users all over Europe, Asia and Africa have given me ideas how to develop this program. Thanks for all!

© 1998-2009, ForestCalc Consulting Oy

All inquiries, comments and feedback regarding ForestCalc Inventory are welcome to:

ForestCalc Consulting Oy

Mr Lauri Vesa
Koski-Jaakonkatu 15
FIN-80230 Joensuu
FINLAND
Email: firstname.vesa@forestcalc.com
www: http://www.forestcalc.com

5. References

Akca, A. 2000. Forest Inventory. Lecture notes. Institute of Forest management and Yield Sciences, University of Göttingen. Germany. 191 p.

Cochran, W. G. 1977. Sampling techniques. 3rd ed. New York: John Wiley and Sons. 428.
Freese, F. 1962. Elementary Forest Sampling. Handbook No. 232, Forest Service, U.S. Department of Agriculture. USA. 91 p.

Kangas, A. \& Maltamo, M. (eds.) 2006. Forest Inventory, Methodology and Applications. Springer. 362 p.
Kempton, R.A. \& Taylor, L.R. 1976. Models and statistics for species diversity. Nature. Vol. 262, 818-820.
Laar van, A. \& Akca, A. 1997. Forest mensuration. Cuvillier Verlag, Göttingen, Germany. 418 p.
Laasasenaho, J. 1982. Taper curve and volume functions for pine, spruce and birch. Seloste: Männyn, kuusen ja koivun runkokäyrä- ja tilavuusyhtälöt. Comm. Inst. Forestalis Fenniae 108. 72 p.

Laasasenaho, J. 1996. Metsän mittaus ja kartoitus, MARV1 Lecture notes. University of Helsinki, Finland.
Magurran, A.E. 1988. Ecological diversity and its measurement. Princeton University Press, Princeton.
Mäkelä, H. \& Salminen, H. 1991. Metsän tilaa ja muutoksia kuvaavia puu- ja puustotunnusmalleja. METLAn tiedonantoja 398. Joensuun tutkimusasema. Finland.

Newnham, R. M. 1988. A variable-form taper function. Canadian Forest Service, Petawawa National Forest Institute. Inf. Rep. OI-X-83, 33 p.

Newnham, R.M. 1992. Variable-form taper functions for four Alberta tree species. Can. J. For. Res. 22: 210223.

Sharma, M. \& Oderwald, R.G. 2001. Dimensionally compatible volume and taper equations. Can. J. For. Res. 31:797-803.

Vesa, L. 2000. Use of equation parsers in forest information systems. In: Salminen, H., Saarikko, J. and Virtanen, E. (eds.). Resource Technology '98 Nordic, International symposium on advanced technology in environmental and natural resources. Finnish Forest Research Institute, Research Papers 791.

Vesa, L. 2000. ForestCalc - Forest mensuration and inventory software. Proceedings of 'Forestry Information Systems 2000' (ILO/FAO), Hyytiälä 16-20 May, 2000.

[^0]: ${ }^{1}$ See more at http://www.fao.org/forestry/26364/en/
 ${ }^{2}$ See Kangas \& Maltamo (2006), page 242.

